Published in

Nature Research, npj Flexible Electronics, 1(7), 2023

DOI: 10.1038/s41528-023-00237-4

Links

Tools

Export citation

Search in Google Scholar

Cu(In,Ga)Se2 based ultrathin solar cells the pathway from lab rigid to large scale flexible technology

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractThe incorporation of interface passivation structures in ultrathin Cu(In,Ga)Se2 based solar cells is shown. The fabrication used an industry scalable lithography technique—nanoimprint lithography (NIL)—for a 15 × 15 cm2 dielectric layer patterning. Devices with a NIL nanopatterned dielectric layer are benchmarked against electron-beam lithography (EBL) patterning, using rigid substrates. The NIL patterned device shows similar performance to the EBL patterned device.The impact of the lithographic processes in the rigid solar cells’ performance were evaluated via X-ray Photoelectron Spectroscopy and through a Solar Cell Capacitance Simulator. The device on stainless-steel showed a slightly lower performance than the rigid approach, due to additional challenges of processing steel substrates, even though scanning transmission electron microscopy did not show clear evidence of impurity diffusion. Notwithstanding, time-resolved photoluminescence results strongly suggested elemental diffusion from the flexible substrate. Nevertheless, bending tests on the stainless-steel device demonstrated the mechanical stability of the CIGS-based device.