Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Plants, 5(11), p. 681, 2022

DOI: 10.3390/plants11050681

Links

Tools

Export citation

Search in Google Scholar

Unprecedented Insights on Chemical and Biological Significance of Euphorbia cactus Growing in Saudi Arabia

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Euphorbia cactus Ehrenb ex Boiss. is a plant species reported from central Africa and the southern Arabian Peninsula, belonging to the family of Euphorbiaceae. The plant has ethnobotanical values and is well-known for its milky latex, which has been turned into medicine to treat various ailments. To the best of our knowledge, there have been no literature reports available on phytochemical constituents and antiproliferative mechanism of E. cactus. In the current study, the phytochemical investigation of E. cactus methanolic extract (ECME) resulted in the isolation and characterization of four secondary metabolites, which are reported for the first time from this plant species. In addition, the results of 1,1-diphenyl-2-picrylhydrazyl (DPPH•) and ferrous ion chelating (FIC) assays expressed maximum antioxidant activity by ECME and the isolated phytochemicals. Furthermore, ECME exerted a promising antiproliferative effect against different cancer cell lines, and the A549 lung cancer cells were the most sensitive with an IC50 value of 20 µg/mL. The antiproliferative action of ECME in A549 cells was associated with cell accumulation in the G2/M phase and an increase in early and late apoptosis. In addition, RT-PCR and western blot analysis revealed that ECME decreased the anti-apoptotic (Bcl-2) expression, while the expression of pro-apoptotic (Bax) and caspase-3 were increased. This study provides the first insight into the phytochemical constituents and the antiproliferative mechanism of ECME, implying that it could be exploited as a promising natural source for developing new cancer therapies. Further preclinical research is warranted to support the current results.