American Association for Cancer Research, Clinical Cancer Research, 22(27), p. 6156-6163, 2021
DOI: 10.1158/1078-0432.ccr-21-2103
Full text: Unavailable
Abstract Purpose: The companion diagnostic test for trastuzumab has not changed much in the last 25 years. We used high-plex digital spatial profiling to identify biomarkers besides HER2 that can help predict response to trastuzumab in HER2-positive breast cancer. Experimental Design: Fifty-eight protein targets were measured in three different molecularly defined compartments by the NanoString GeoMx Digital Spatial Profiler (DSP) in a tissue microarray containing 151 patients with breast cancer that received adjuvant trastuzumab as part of the Hellenic Cooperative Oncology Group 10/05 clinical trial. Promising candidate biomarkers were orthogonally validated with quantitative immunofluorescence (QIF). RNA-sequencing data from the Neoadjuvant Lapatinib and/or Trastuzumab Treatment Optimisation Study (NeoALTTO) were accessed to provide independent cohort validation. Disease-free survival (DFS) was the main outcome assessed. Statistical analyses were performed using a two-sided test (α = 0.05) and multiple testing correction (Benjamini–Hochberg method, FDR < 0.1). Results: By DSP, high expression of alpha-smooth muscle actin (α-SMA), both in the leukocyte and stromal compartments, was associated with shorter DFS in univariate analysis (P = 0.002 and P = 0.023, respectively). High α-SMA expression in the stroma was validated by QIF after controlling for estrogen receptor and progesterone receptor status [HR, 3.12; 95% confidence interval (CI), 1.12–8.68; P = 0.029] showing recurrence on trastuzumab in the same cohort. In the NeoALTTO cohort, elevated levels of ACTA2 were predictive for shorter DFS in the multivariate analysis (HR, 3.21; 95% CI, 1.14–9.05; P = 0.027). Conclusions: This work identifies α-SMA as a novel, easy-to-implement biomarker of resistance to trastuzumab that may be valuable in settings where trastuzumab is combined with other therapies.