Dissemin is shutting down on January 1st, 2025

Published in

Springer, Journal of Solid State Electrochemistry, 9(26), p. 1961-1968, 2022

DOI: 10.1007/s10008-022-05225-8

Links

Tools

Export citation

Search in Google Scholar

High critical currents for dendrite penetration and voiding in potassium metal anode solid-state batteries

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractPotassium metal anode solid-state cells with a K-beta”-alumina ceramic electrolyte are found to have relatively high critical currents for dendrite penetration on charge of approximately 4.8 mA/cm2, and voiding on discharge of approximately 2.0 mA/cm2, at 20 °C under 2.5 MPa stack-pressure. These values are higher than generally reported in the literature under comparable conditions for Li and Na metal anode solid-state batteries. The higher values for potassium are attributed to its lower yield strength and its readiness to creep under relatively low stack-pressures. The high critical currents of potassium anode solid-state batteries help to confirm the importance of the metal anode mechanical properties in the mechanisms of dendrite penetration and voiding.