Published in

MDPI, Nutrients, 10(13), p. 3516, 2021

DOI: 10.3390/nu13103516

Links

Tools

Export citation

Search in Google Scholar

Zinc Supplementation with or without Additional Micronutrients Does Not Affect Peripheral Blood Gene Expression or Serum Cytokine Level in Bangladeshi Children

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Preventive zinc supplementation provided as a stand-alone dispersible tablet, or via home fortification as multiple micronutrient powders (MNPs), has been considered a potential strategy to prevent zinc deficiency and improve health (including immune) outcomes among children in low- and middle-income countries. However, the impact of zinc supplementation on immune profiles has not been well characterized. We sought to define the effect of zinc supplementation on peripheral blood gene expression and cytokine levels among young children in Dhaka, Bangladesh. In a sub-study of a large randomized, controlled, community-based efficacy trial where children 9–11 months of age received one of the following interventions on a daily basis for 24 weeks: (1) MNPs containing 10 mg of zinc; (2) dispersible tablet containing 10 mg zinc; or (3) placebo powder, we used RNA sequencing to profile the peripheral blood gene expression, as well as highly sensitive multiplex assays to detect cytokine profiles. We profiled samples from 100 children enrolled in the parent trial (zinc MNPs 28, zinc tablets 39, placebo 33). We did not detect an effect from either zinc intervention on differential peripheral blood gene expression at the end of the intervention, or an effect from the intervention on changes in gene expression from baseline. We also did not detect an effect from either intervention on cytokine concentrations. Exploratory analysis did not identify an association between undernutrition (defined as stunting, underweight or wasting) and peripheral blood gene expression. Zinc interventions in children did not produce a gene expression or cytokine signature in the peripheral blood. However, this study demonstrates a proof of principle that sensitive multi-omic techniques can be applied to samples collected in field studies.