Published in

MDPI, Agronomy, 3(13), p. 836, 2023

DOI: 10.3390/agronomy13030836

Links

Tools

Export citation

Search in Google Scholar

Assessing Drought Tolerance of Newly Developed Tissue-Cultured Canola Genotypes under Varying Irrigation Regimes

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Drought is a major abiotic stress that greatly affects canola growth, production, and quality. Moreover, water scarcity is projected to be more severe and frequent as a result of climate change, in particular in arid environments. Thereupon, developing drought-tolerant and high-yielding canola genotypes has become more critical to sustaining its production and ensuring global food security with the continuing population growth. In the present study, ten canola genotypes comprising six developed tissue-cultured canola genotypes, two exotic genotypes, and two commercial cultivars were evaluated under four irrigation regimes. The applied irrigation regimes were well-watered (100% crop evapotranspiration, ETc), mild drought (80% ETc), moderate drought (60% ETc), and severe drought (40% ETc) conditions. Drought-stress treatments (80, 60, and 40% ETc) gradually reduced the chlorophyll content, relative water content, flowering time, days to maturity, plant height, number of pods, number of branches, seed yield, and oil percentage, and increased proline, phenolic, anthocyanin, and glycine betaine contents. The evaluated genotypes exhibited varied responses to drought-stress conditions. The developed tissue-cultured genotypes T2, T3, and T1, as well as exotic genotype Torpe, possessed the highest performance in all evaluated parameters and surpassed the other tested genotypes under water-deficit conditions. Overall, our findings elicited the superiority of certain newly developed tissue-cultured genotypes and exotic ones compared with commercial cultivars, which could be exploited in canola breeding under water-deficit conditions.