Dissemin is shutting down on January 1st, 2025

Published in

BioMed Central, Malaria Journal, 1(22), 2023

DOI: 10.1186/s12936-023-04548-9

Links

Tools

Export citation

Search in Google Scholar

Impacts of dual active-ingredient bed nets on the behavioural responses of pyrethroid resistant Anopheles gambiae determined by room-scale infrared video tracking

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract Background The success of insecticide treated bed nets (ITNs) for malaria vector control in Africa relies on the behaviour of various species of Anopheles. Previous research has described mosquito behavioural alterations resulting from widespread ITN coverage, which could result in a decrease in net efficacy. Here, behaviours were compared including timings of net contact, willingness to refeed and longevity post-exposure to two next-generation nets, PermaNet® 3.0 (P3 net) and Interceptor® G2 (IG2 net) in comparison with a standard pyrethroid-only net (Olyset Net™ (OL net)) and an untreated net. Methods Susceptible and resistant Anopheles gambiae mosquitoes were exposed to the nets with a human volunteer host in a room-scale assay. Mosquito movements were tracked for 2 h using an infrared video system, collecting flight trajectory, spatial position and net contact data. Post-assay, mosquitoes were monitored for a range of sublethal insecticide effects. Results Mosquito net contact was focused predominantly on the roof for all four bed nets. A steep decay in activity was observed for both susceptible strains when P3 net and OL net were present and with IG2 net for one of the two susceptible strains. Total mosquito activity was higher around untreated nets than ITNs. There was no difference in total activity, the number, or duration, of net contact, between any mosquito strain, with similar behaviours recorded in susceptible and resistant strains at all ITNs. OL net, P3 net and IG2 net all killed over 90% of susceptible mosquitoes 24 h after exposure, but this effect was not seen with resistant mosquitoes where mortality ranged from 16 to 72%. All treated nets reduced the willingness of resistant strains to re-feed when offered blood 1-h post-exposure, with a more pronounced effect seen with P3 net and OL net than IG2 net. Conclusion These are the first results to provide an in-depth description of the behaviour of susceptible and resistant Anopheles gambiae strains around next-generation bed nets using a room-scale tracking system to capture multiple behaviours. These results indicate that there is no major difference in behavioural responses between mosquito strains of differing pyrethroid susceptibility when exposed to these new ITNs under the experimental conditions used.