Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Sustainability, 17(13), p. 9811, 2021

DOI: 10.3390/su13179811

Links

Tools

Export citation

Search in Google Scholar

Soil-Applied Boron Combined with Boron-Tolerant Bacteria (Bacillus sp. MN54) Improve Root Proliferation and Nodulation, Yield and Agronomic Grain Biofortification of Chickpea (Cicer arietinum L.)

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Chickpea is widely cultivated on calcareous sandy soils in arid and semi-arid regions of Pakistan; however, widespread boron (B) deficiencies in these soils significantly decreases its productivity. Soil application of B could improve chickpea yield and grain-B concentration. However, optimizing suitable B level is necessary due to a narrow deficiency and toxicity range of B. Nonetheless, the co-application of B-tolerant bacteria (BTB) and synthetic B fertilizer could be helpful in obtaining higher chickpea yields and grain-B concentration. Therefore, this study optimized the level of soil applied B along with BTB, (i.e., Bacillus sp. MN54) to improve growth, yield and grain-B concentrations of chickpea. The B concentrations included in the study were 0.00 (control), 0.25, 0.50, 0.75 and 1.00 mg B kg−1 soil combined with or without Bacillus sp. MN54 inoculation. Soil application of B significantly improved root system, nodulation, yield and grain-B concentration, and Bacillus sp. MN54 inoculation further improved these traits. Moreover, B application at a lower dose (0.25 mg B kg−1 soil) with BTB inoculation recorded the highest improvements in root system (longer roots with more roots’ proliferation), growth, nodulation and grain yield. However, the highest grain-B concentration was recorded under a higher B level (0.75 mg B kg−1 soil) included in the study. Soil application of 0.25 mg B kg−1 with Bacillus sp. MN54 inoculation improved growth and yield-related traits, especially nodule population (81%), number of pods plant−1 (38%), number of grains plant−1 (65%) and grain yield (47%) compared with control treatment. However, the grain-B concentration was higher under the highest B level (1.00 mg kg−1 soil) with Bacillus sp. MN54 inoculation. In conclusion, soil application of 0.25 mg B kg−1 with Bacillus sp. MN54 inoculation is a pragmatic option to improve the root system, nodule population, seedling growth, yield and agronomic grain-B biofortification of chickpea.