Published in

MDPI, Bacteria, 2(2), p. 98-115, 2023

DOI: 10.3390/bacteria2020008

Links

Tools

Export citation

Search in Google Scholar

Rock Phosphate Solubilizing Potential of Soil Microorganisms: Advances in Sustainable Crop Production

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Phosphorus (P) is one of the most important elements required for crop production. The ideal soil pH for its absorption by plants is about 6.5, but in alkaline and acidic soils, most of the consumed P forms an insoluble complex with calcium, iron, and aluminum elements and its availability for absorption by the plant decreases. The supply of P needed by plants is mainly achieved through chemical fertilizers; however, in addition to the high price of these fertilizers, in the long run, their destructive effects will affect the soil and the environment. The use of cheap and abundant resources such as rock phosphate (RP) can be an alternative strategy for P chemical fertilizers, but the solubilization of P of this source has been a challenge for agricultural researchers. For this, physical and chemical treatments have been used, but the solution that has recently attracted the attention of the researchers is to use the potential of rhizobacteria to solubilize RP and supply P to plants by this method. These microorganisms, via. mechanisms such as proton secretion, organic and mineral acid production, siderophore production, etc., lead to the solubilization of RP, and by releasing its P, they improve the quantitative and qualitative performance of agricultural products. In this review, addressing the potential of rhizosphere microbes (with a focus on rhizobacteria) as an eco-friendly strategy for RP solubilization, along with physical and chemical solutions, has been attempted.