Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Journal of Clinical Medicine, 1(12), p. 241, 2022

DOI: 10.3390/jcm12010241

Links

Tools

Export citation

Search in Google Scholar

Kinematic Parameters That Can Discriminate in Levels of Functionality in the Six-Minute Walk Test in Patients with Heart Failure with a Preserved Ejection Fraction

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

It is a challenge to manage and assess heart failure with preserved left ventricular ejection fraction (HFpEF) patients. Six-Minute Walk Test (6MWT) is used in this clinical population as a functional test. The objective of the study was to assess gait and kinematic parameters in HFpEF patients during the 6MWT with an inertial sensor and to discriminate patients according to their performance in the 6MWT: (1) walk more or less than 300 m, (2) finish or stop the test, (3) women or men and (4) fallen or did not fall in the last year. A cross-sectional study was performed in patients with HFpEF older than 70 years. 6MWT was carried out in a closed corridor larger than 30 m. Two Shimmer3 inertial sensors were used in the chest and lumbar region. Pure kinematic parameters analysed were angular velocity and linear acceleration in the three axes. Using these data, an algorithm calculated gait kinematic parameters: total distance, lap time, gait speed and step and stride variables. Two analyses were done according to the performance. Student’s t-test measured differences between groups and receiver operating characteristic assessed discriminant ability. Seventy patients performed the 6MWT. Step time, step symmetry, stride time and stride symmetry in both analyses showed high AUC values (>0.75). More significant differences in velocity and acceleration in the maximum Y axis or vertical movements. Three pure kinematic parameters obtained good discriminant capacity (AUC > 0.75). The new methodology proved differences in gait and pure kinematic parameters that can distinguish two groups according to the performance in the 6MWT and they had discriminant capacity.