Published in

F1000Research, Wellcome Open Research, (6), p. 53, 2022

DOI: 10.12688/wellcomeopenres.16429.2

F1000Research, Wellcome Open Research, (6), p. 53, 2021

DOI: 10.12688/wellcomeopenres.16429.1



Export citation

Search in Google Scholar

Large-scale assessment of 7-11-year-olds’ cognitive and sensorimotor function within the Born in Bradford longitudinal birth cohort study

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO


Background: Cognitive ability and sensorimotor function are crucial aspects of children’s development, and are associated with physical and mental health outcomes and educational attainment. This paper describes cross-sectional sensorimotor and cognitive function data collected on over 15,000 children aged 7-10 years, collected as part of the Born in Bradford (BiB) longitudinal birth-cohort study. Methodological details of the large-scale data collection process are described, along with initial analyses of the data involving the relationship between cognition/sensorimotor ability and age and task difficulty, and associations between tasks. Method: Data collection was completed in 86 schools between May 2016 and July 2019. Children were tested at school, individually, using a tablet computer with a digital stylus or finger touch for input. Assessments comprised a battery of three sensorimotor tasks (Tracking, Aiming, & Steering) and five cognitive tasks (three Working Memory tasks, Inhibition, and Processing Speed), which took approximately 40 minutes. Results: Performance improved with increasing age and decreasing task difficulty, for each task. Performance on all three sensorimotor tasks was correlated, as was performance on the three working memory tasks. In addition, performance on a composite working memory score correlated with performance on both inhibition and processing speed. Interestingly, within age-group variation was much larger than between age-group variation. Conclusions: The current project collected computerised measures of a range of cognitive and sensorimotor functions at 7-10 years of age in over 15,000 children. Performance varied as expected by age and task difficulty, and showed the predicted correlations between related tasks. Large within-age group variation highlights the need to consider the profile of individual children in studying cognitive and sensorimotor development. These data can be linked to the wider BiB dataset including measures of physical and mental health, biomarkers and genome-wide data, socio-demographic information, and routine data from local health and education services.