Dissemin is shutting down on January 1st, 2025

Published in

Springer, European Journal of Nutrition, 7(61), p. 3669-3684, 2022

DOI: 10.1007/s00394-022-02910-2

Links

Tools

Export citation

Search in Google Scholar

Impact of a food-based dietary fat exchange model for replacing dietary saturated with unsaturated fatty acids in healthy men on plasma phospholipids fatty acid profiles and dietary patterns

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Purpose UK guidelines recommend dietary saturated fatty acids (SFAs) should not exceed 10% total energy (%TE) for cardiovascular disease prevention, with benefits observed when SFAs are replaced with unsaturated fatty acids (UFAs). This study aimed to assess the efficacy of a dietary exchange model using commercially available foods to replace SFAs with UFAs. Methods Healthy men (n = 109, age 48, SD 11 year) recruited to the Reading, Imperial, Surrey, Saturated fat Cholesterol Intervention-1 (RISSCI-1) study (ClinicalTrials.Gov n°NCT03270527) followed two sequential 4-week isoenergetic moderate-fat (34%TE) diets: high-SFA (18%TE SFAs, 16%TE UFAs) and low-SFA (10%TE SFAs, 24%TE UFAs). Dietary intakes were assessed using 4-day weighed diet diaries. Nutrient intakes were analysed using paired t-tests, fasting plasma phospholipid fatty acid (PL-FA) profiles and dietary patterns were analysed using orthogonal partial least square discriminant analyses. Results Participants exchanged 10.2%TE (SD 4.1) SFAs for 9.7%TE (SD 3.9) UFAs between the high and low-SFA diets, reaching target intakes with minimal effect on other nutrients or energy intakes. Analyses of dietary patterns confirmed successful incorporation of recommended foods from commercially available sources (e.g. dairy products, snacks, oils, and fats), without affecting participants’ overall dietary intakes. Analyses of plasma PL-FAs indicated good compliance to the dietary intervention and foods of varying SFA content. Conclusions RISSCI-1 dietary exchange model successfully replaced dietary SFAs with UFAs in free-living healthy men using commercially available foods, and without altering their dietary patterns. Further intervention studies are required to confirm utility and feasibility of such food-based dietary fat replacement models at a population level.