Dissemin is shutting down on January 1st, 2025

Published in

MDPI, International Journal of Molecular Sciences, 14(24), p. 11479, 2023

DOI: 10.3390/ijms241411479

Links

Tools

Export citation

Search in Google Scholar

Rectal Cancer Tissue Lipidome Differs According to Response to Neoadjuvant Therapy

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Rectal cancer (RC) is a gastrointestinal cancer with a poor prognosis. While some studies have shown metabolic reprogramming to be linked to RC development, it is difficult to define biomolecules, like lipids, that help to understand cancer progression and response to therapy. The present study investigated the relative lipid abundance in tumoral tissue associated with neoadjuvant therapy response using untargeted liquid chromatography–mass spectrometry lipidomics. Locally advanced rectal cancer (LARC) patients (n = 13), clinically staged as T3–4 were biopsied before neoadjuvant chemoradiotherapy (nCRT). Tissue samples collected before nCRT (staging) and afterwards (restaging) were analyzed to discover lipidomic differences in RC cancerous tissue from Responders (n = 7) and Non-responders (n = 6) to nCRT. The limma method was used to test differences between groups and to select relevant feature lipids from tissue samples. Simple glycosphingolipids and differences in some residues of glycerophospholipids were more abundant in the Non-responder group before and after nCRT. Oxidized glycerophospholipids were more abundant in samples of Non-responders, especially those collected after nCRT. This work identified potential lipids in tissue samples that take part in, or may explain, nCRT failure. These results could potentially provide a lipid-based explanation for nCRT response and also help in understanding the molecular basis of RC and nCRT effects on the tissue matrix.