Published in

American Association for Cancer Research, Molecular Cancer Research, 4(20), p. 556-567, 2022

DOI: 10.1158/1541-7786.mcr-21-0672

Links

Tools

Export citation

Search in Google Scholar

MUC1-C Dictates JUN and BAF-Mediated Chromatin Remodeling at Enhancer Signatures in Cancer Stem Cells

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract The oncogenic MUC1-C protein promotes dedifferentiation of castrate-resistant prostate cancer (CRPC) and triple-negative breast cancer (TNBC) cells. Chromatin remodeling is critical for the cancer stem cell (CSC) state; however, there is no definitive evidence that MUC1-C regulates chromatin accessibility and thereby expression of stemness-associated genes. We demonstrate that MUC1-C drives global changes in chromatin architecture in the dedifferentiation of CRPC and TNBC cells. Our results show that MUC1-C induces differentially accessible regions (DAR) across their genomes, which are significantly associated with differentially expressed genes (DEG). Motif and cistrome analysis further demonstrated MUC1-C–induced DARs align with genes regulated by the JUN/AP-1 family of transcription factors. MUC1-C activates the BAF chromatin remodeling complex, which is recruited by JUN in enhancer selection. In studies of the NOTCH1 gene, which is required for CRPC and TNBC cell self-renewal, we demonstrate that MUC1-C is necessary for (i) occupancy of JUN and ARID1A/BAF, (ii) increases in H3K27ac and H3K4me3 signals, and (iii) opening of chromatin accessibility on a proximal enhancer–like signature. Studies of the EGR1 and LY6E stemness–associated genes further demonstrate that MUC1-C–induced JUN/ARID1A complexes regulate chromatin accessibility on proximal and distal enhancer–like signatures. These findings uncover a role for MUC1-C in chromatin remodeling that is mediated at least in part by JUN/AP-1 and ARID1A/BAF in association with driving the CSC state. Implications: These findings show that MUC1-C, which is necessary for the CRPC and TNBC CSC state, activates a novel pathway involving JUN/AP-1 and ARID1A/BAF that regulates chromatin accessibility of stemness-associated gene enhancers.