Published in

IOP Publishing, Journal of Physics: Conference Series, 1(2015), p. 012101, 2021

DOI: 10.1088/1742-6596/2015/1/012101

Links

Tools

Export citation

Search in Google Scholar

Purcell enhancement of fluorescence from silicon-vacancy color centers in Mie-resonant luminescent diamond particles

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract Over the past two decades, nanosized diamond particles with various luminescent defects have found numerous applications in many areas from quantum technologies to medical science. The size and shape of diamond particles can affect drastically the luminescence of embedded color centers. Here we study diamond particles of 250–450 nm in size containing silicon-vacancy (SiV) centers. Using dark-field scattering spectroscopy, we found that fundamental Mie resonances are excited in the spectral range of interest. We then measured the fluorescence saturation curves under continuous excitation to estimate the effects of the excitation and Purcell factor enhancement on the luminescent properties of the studied particles. The results show that the saturation excitation intensity differs by several times for particles of different sizes which is well explained by the numerical model that takes into account both the Parcell factor enhancement and resonant excitation.