Dissemin is shutting down on January 1st, 2025

Published in

BioMed Central, Annals of Forest Science, 1(80), 2023

DOI: 10.1186/s13595-022-01169-1

Links

Tools

Export citation

Search in Google Scholar

Linking structure and species richness to support forest biodiversity monitoring at large scales

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract Key message Authors have analyzed the possible correlation between measurements/indicators of forest structure and species richness of many taxonomic or functional groups over three regions of Germany. Results show the potential to use structural attributes as a surrogate for species richness of most of the analyzed taxonomic and functional groups. This information can be transferred to large-scale forest inventories to support biodiversity monitoring. Context We are currently facing a dramatic loss in biodiversity worldwide and this initiated many monitoring programs aiming at documenting further trends. However, monitoring species diversity directly is very resource demanding, in particular in highly diverse forest ecosystems. Aims We investigated whether variables applied in an index of stand structural diversity, which was developed based on forest attributes assessed in the German National Forest Inventory, can be calibrated against richness of forest-dwelling species within a wide range of taxonomic and functional groups. Methods We used information on forest structure and species richness that has been comprehensively assessed on 150 forest plots of the German biodiversity exploratories project, comprising a large range of management intensities in three regions. We tested, whether the forest structure index calculated for these forest plots well correlate with the number of species across 29 taxonomic and functional groups, assuming that the structural attributes applied in the index represent their habitat requirements. Results The strength of correlations between the structural variables applied in the index and number of species within taxonomic or functional groups was highly variable. For some groups such as Aves, Formicidae or vascular plants, structural variables had a high explanatory power for species richness across forest types. Species richness in other taxonomic and functional groups (e.g., soil and root-associated fungi) was not explained by individual structural attributes of the index. Results indicate that some taxonomic and functional groups depend on a high structural diversity, whereas others seem to be insensitive to it or even prefer structurally poor stands. Conclusion Therefore, combinations of forest stands with different degrees of structural diversity most likely optimize taxonomic diversity at the landscape level. Our results can support biodiversity monitoring through quantification of forest structure in large-scale forest inventories. Changes in structural variables over inventory periods can indicate changes in habitat quality for individual taxonomic groups and thus points towards national forest inventories being an effective tool to detect unintended effects of changes in forest management on biodiversity.