Dissemin is shutting down on January 1st, 2025

Published in

Wiley Open Access, Energy & Environmental Materials, 2(5), p. 670-682, 2022

DOI: 10.1002/eem2.12321

Links

Tools

Export citation

Search in Google Scholar

Influence of Halide Choice on Formation of Low‐Dimensional Perovskite Interlayer in Efficient Perovskite Solar Cells

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Recent advances in heterojunction and interfacial engineering of perovskite solar cells (PSCs) have enabled great progress in developing highly efficient and stable devices. Nevertheless, the effect of halide choice on the formation mechanism, crystallography, and photoelectric properties of the low‐dimensional phase still requires further detailed study. In this work, we present key insights into the significance of halide choice when designing passivation strategies comprising large organic spacer salts, clarifying the effect of anions on the formation of quasi‐2D/3D heterojunctions. To demonstrate the importance of halide influences, we employ novel neo‐pentylammonium halide salts with different halide anions (neoPAX, X=I, Br, or Cl). We find that regardless of halide selection, iodide‐based (neoPA)2(FA)(n‐1)PbnI(3n+1) phases are formed above the perovskite substrate, while the added halide anions diffuse and passivate the perovskite bulk. In addition, we also find the halide choice has an influence on the degree of dimensionality (n). Comparing the three halides, we find that chloride‐based salts exhibit superior crystallographic, enhanced carrier transport, and extraction compared to the iodide and bromide analogs. As a result, we report high power conversion efficiency in quasi‐2D/3D PSCs, which are optimal when using chloride salts, reaching up to 23.35%, and improving long‐term stability.