Published in

MDPI, Pharmaceutics, 5(13), p. 712, 2021

DOI: 10.3390/pharmaceutics13050712

Links

Tools

Export citation

Search in Google Scholar

Ferri–Liposomes: Preformulation and Selective Cytotoxicity against A549 Lung Cancer Cells

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Liposomes have become successful nanostructured systems used in clinical practices. These vesicles are able to carry important drug loadings with noteworthy stability. The aim of this work was to develop iron oxide-loaded stealth liposomes as a prospective alternative for the treatment of lung cancer. In this study, citric acid iron oxide nanoparticles (IONPs-Ac) were synthesized and encapsulated in stealth liposomes. Their cytotoxicity and selectivity against lung tumor cells were assessed. Stealth liposomal vesicles, with relevant content of IONPs-Ac, named ferri–liposomes (SL-IONPs-Ac), were produced with an average size of 200 nm. They displayed important cytotoxicity in a human lung cancer cells model (A549 cells), even at low concentrations, whereas free IONPs-Ac displayed adequate biocompatibility. Nevertheless, the treatment at the same concentration of ferri–liposomes against HEK-293 cells, a normal human cell lineage, was not significantly cytotoxic, revealing a probable lung tumor selectiveness of the fabricated formulation. Furthermore, from the flow cytometry studies, it was possible to infer that ferri–liposomes were able to induce A549 tumor cells death through apoptosis/ferroptosis processes, evidenced by a significant reduction of the mitochondrial membrane potential.