Published in

MDPI, Magnetochemistry, 5(9), p. 122, 2023

DOI: 10.3390/magnetochemistry9050122

Links

Tools

Export citation

Search in Google Scholar

A Cu12 Metallacycle Assembled from Four C3-Symmetric Spin Frustrated Triangular Units

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Assembling metallacycles with interesting topological arrangements is a critical task for chemists. We report here a novel dodecanuclear CuII compound, [{Cu3L(µ-N3)}4(Py)14]·2Py (Cu12) (where Py = pyridine and [H6L]Cl = tris(2-hydroxybenzylidine)triaminoguanidinium chloride, respectively), with the topology of a cycle accomplished by four two-connecting approximately flat C3-symmetric guanidine-based ligands. Each ligand affords three tridentate metal-binding cavities and the four node-to-node connections through single azido bridges are provided by pairs of metal centers. A theoretical investigation using CASSCF in addition to DFT calculations showed strong antiferromagnetic coupling within the Cu3-triangles, resulting in spin-frustrated systems. However, these calculations were not able to properly reproduce the very weak antiferromagnetic couplings between the triangle units, highlighting the challenge of describing the magnetic behavior of this compound.