Published in

American Institute of Physics, Review of Scientific Instruments, 8(94), 2023

DOI: 10.1063/5.0150031

Links

Tools

Export citation

Search in Google Scholar

Laser-driven ramp-compression experiments on the national ignition facility

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

This report details the analyses and related uncertainties in measuring longitudinal-stress–density paths in indirect laser-driven ramp equation-of-state (EOS) experiments [Smith et al., Nat. Astron. 2(6), 452–458 (2018); Smith et al., Nature 511(7509), 330–333 (2014); Fratanduono et al., Science 372(6546), 1063–1068 (2021); and Fratanduono et al., Phys. Rev. Lett. 124(1), 015701 (2020)]. Experiments were conducted at the National Ignition Facility (NIF) located at the Lawrence Livermore National Laboratory. The NIF can deliver up to 2 MJ of laser energy over 30 ns and provide the necessary laser power and control to ramp compress materials to TPa pressures (1 TPa = 10 × 106 atmospheres). These data provide low-temperature solid-state EOS data relevant to the extreme conditions found in the deep interiors of giant planets. In these experiments, multi-stepped samples with thicknesses in the range of 40–120 µm experience an initial shock compression followed by a time-dependent ramp compression to peak pressure. Interface velocity measurements from each thickness combine to place a constraint on the Lagrangian sound speed as a function of particle velocity, which in turn allows for the determination of a continuous stress–density path to high levels of compressibility. In this report, we present a detailed description of the experimental techniques and measurement uncertainties and describe how these uncertainties combine to place a final uncertainty in both stress and density. We address the effects of time-dependent deformation and the sensitivity of ramp EOS techniques to the onset of phase transformations.