Published in

Wiley, BioEssays, 9(44), 2022

DOI: 10.1002/bies.202200047

Links

Tools

Export citation

Search in Google Scholar

Holy grail of tissue regeneration: Size

Journal article published in 2022 by Kellen Chen ORCID, Dominic Henn ORCID, Geoffrey C. Gurtner
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractCells and tissue within injured organs undergo a complicated healing process that still remains poorly understood. Interestingly, smaller organisms respond to injury with tissue regeneration and restoration of function, while humans and other large organisms respond to injury by forming dysfunctional, fibrotic scar tissue. Over the past few decades, allometric scaling principles have been well established to show that larger organisms experience exponentially higher tissue forces during movement and locomotion and throughout the organism's lifespan. How these evolutionary adaptations may affect tissue injury has not been thoroughly investigated in humans. We discuss how these adapations may affect healing and demonstrate that blocking the most evolutionary conserved biologic force sensor enables large organisms to heal after injury with true tissue regeneration. Future strategies to disrupt tissue force sensors may unlock the key to regenerating after injury in a wide range of organ systems.