Published in

Wiley Open Access, Advanced Science, 24(9), 2022

DOI: 10.1002/advs.202201673

Links

Tools

Export citation

Search in Google Scholar

Transparent Conducting Films Based on Carbon Nanotubes: Rational Design toward the Theoretical Limit

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractElectrically conductive thin‐film materials possessing high transparency are essential components for many optoelectronic devices. The advancement in the transparent conductor applications requires a replacement of indium tin oxide (ITO), one of the key materials in electronics. ITO and other transparent conductive metal oxides have several drawbacks, including poor flexibility, high refractive index and haze, limited chemical stability, and depleted raw material supply. Single‐walled carbon nanotubes (SWCNTs) are a promising alternative for transparent conducting films (TCFs) because of their unique and excellent chemical and physical properties. Here, the latest achievements in the optoelectronic performance of TCFs based on SWCNTs are analyzed. Various approaches to evaluate the performance of transparent electrodes are briefly reviewed. A roadmap for further research and development of the transparent conductors using “rational design,” which breaks the deadlock for obtaining the TCFs with a performance close to the theoretical limit, is also described.