Published in

Oxford University Press, European Heart Journal – Acute CardioVascular Care, 2023

DOI: 10.1093/ehjacc/zuad105

Links

Tools

Export citation

Search in Google Scholar

Air pollution and out-of-hospital cardiac arrest risk: a 7-year study from a highly polluted area

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Aims Globally, nearly 20% of cardiovascular disease deaths were attributable to air pollution. Out-of-hospital cardiac arrest (OHCA) represents a major public health problem; therefore, the identification of novel OHCA triggers is of crucial relevance. The aim of the study was to evaluate the association between air pollution (short-, mid-, and long-term exposures) and OHCA risk, during a 7-year period in a highly polluted urban area in northern Italy, with a high density of automated external defibrillators (AEDs). Methods and results Out-of-hospital cardiac arrests were prospectively collected from the ‘Progetto Vita Database’ between 1 January 2010 and 31 December 2017; day-by-day air pollution levels were extracted from the Environmental Protection Agency stations. Electrocardiograms of OHCA interventions were collected from the AED data cards. Day-by-day particulate matter (PM) 2.5 and 10, ozone (O3), carbon monoxide (CO), and nitrogen dioxide (NO2) levels were measured. A total of 880 OHCAs occurred in 748 days. A significant increase in OHCA risk with a progressive increase in PM2.5, PM10, CO, and NO2 levels was found. After adjustment for temperature and seasons, a 9% and 12% increase in OHCA risk for each 10 μg/m3 increase in PM10 (P < 0.0001) and PM2.5 (P < 0.0001) levels was found. Air pollutant levels were associated with both asystole and shockable rhythm risk, while no correlation was found with pulseless electrical activity. Conclusion Short- and mid-term exposures to PM2.5 and PM10 are independently associated with the risk of OHCA due to asystole or shockable rhythm.