Published in

arXiv, 2023

DOI: 10.48550/arxiv.2301.11370

Nature Research, Nature Communications, 1(14), 2023

DOI: 10.1038/s41467-023-42436-7

Links

Tools

Export citation

Search in Google Scholar

Detecting the spin-polarization of edge states in graphene nanoribbons

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

AbstractLow dimensional carbon-based materials can show intrinsic magnetism associated to p-electrons in open-shell π-conjugated systems. Chemical design provides atomically precise control of the π-electron cloud, which makes them promising for nanoscale magnetic devices. However, direct verification of their spatially resolved spin-moment remains elusive. Here, we report the spin-polarization of chiral graphene nanoribbons (one-dimensional strips of graphene with alternating zig-zag and arm-chair boundaries), obtained by means of spin-polarized scanning tunnelling microscopy. We extract the energy-dependent spin-moment distribution of spatially extended edge states with π-orbital character, thus beyond localized magnetic moments at radical or defective carbon sites. Guided by mean-field Hubbard calculations, we demonstrate that electron correlations are responsible for the spin-splitting of the electronic structure. Our versatile platform utilizes a ferromagnetic substrate that stabilizes the organic magnetic moments against thermal and quantum fluctuations, while being fully compatible with on-surface synthesis of the rapidly growing class of nanographenes.