Published in

BioMed Central, BMC Musculoskeletal Disorders, 1(22), 2021

DOI: 10.1186/s12891-021-04779-4

Links

Tools

Export citation

Search in Google Scholar

Association between circulating 25-hydroxyvitamin D concentrations and hip replacement for osteoarthritis: a prospective cohort study

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractBackgroundTo examine the association between circulating 25(OH)D concentrations and incidence of total hip replacement for osteoarthritis in a prospective cohort study.MethodsThis study examined a random sample of 2651 participants in the Melbourne Collaborative Cohort Study who had 25(OH)D concentrations measured from dried blood spots collected in 1990-1994. Participants who underwent total hip replacement for osteoarthritis between January 2001 and December 2018 were identified by linking the cohort records to the Australian Orthopaedic Association National Joint Replacement Registry. Cox proportional hazard regression was used to estimate hazard ratios (HR) and 95% confidence intervals (CI) of total hip replacement for osteoarthritis in relation to 25(OH)D concentrations, adjusted for confounders.ResultsEighty-six men and eighty-seven women had a total hip replacement for osteoarthritis. Compared with men in the lowest (1st) quartile of 25(OH)D concentration, the HR for total hip replacement was 2.32 (95% CI 1.05, 5.13) for those in the 2nd quartile, 2.77 (95% CI 1.28, 6.00) for those in the 3rd quartile, and 1.73 (95% CI 0.75, 4.02) for those in the highest quartile of 25(OH)D concentrations (pfor trend 0.02). There was little evidence of an association in women.ConclusionsHigher circulating 25(OH)D concentrations were associated with an increased risk of total hip replacement for osteoarthritis in men but not in women. Although the underlying mechanism warrants further investigation, our findings highlight the need to determine the optimal levels of circulating 25(OH)D to reduce the risk of hip osteoarthritis.