Published in

Oxford University Press, The Journal of Clinical Endocrinology & Metabolism, 5(107), p. e1807-e1815, 2022

DOI: 10.1210/clinem/dgac044

Links

Tools

Export citation

Search in Google Scholar

Higher Free Triiodothyronine Is Associated With Higher HDL Particle Concentration and Smaller HDL Particle Size

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Abstract Context Thyroid function status has effects on the development of atherosclerotic cardiovascular disease by affecting lipid metabolism, but associations of high-density lipoprotein (HDL) particle concentrations and subfractions with thyroid hormone levels within the reference range remain elusive. Objective The aim of the present study was to determine the associations of free triiodothyronine (FT3), free thyroxine (FT4) and thyroid-stimulating hormone (TSH) levels with HDL particle characteristics in euthyroid individuals. Methods This cross-sectional study on the associations of thyroid hormones with HDL particle concentrations, HDL subfractions, and HDL particle size included 5844 euthyroid individuals (FT3, FT4, and TSH levels within the reference range and no medication use affecting thyroid function), participating in the Prevention of REnal and Vascular ENd-stage Disease (PREVEND) study. HDL particles and subfractions were measured by nuclear magnetic resonance using an optimized version of the NMR LipoProfile Test (LP4). Results In multivariable linear regression analyses, FT3 was positively associated with total HDL particle concentration (std.β = 0.14; P < 0.001) and with small (std.β = 0.13; P < 0.001) and medium-sized HDL particles (std.β = 0.05; P = 0.001). Conversely, FT3 was inversely associated with large HDL particles (std.β = −0.07; P < 0.001) and with HDL particle size (std.β = −0.08; P < 0.001). Such associations with FT4 or reciprocally with TSH were less pronounced or nonsignificant. Conclusion In euthyroid individuals, higher FT3 is cross-sectionally associated with higher total HDL particle concentration and with lower HDL particle size. These associations may be relevant to better understand the role of HDL in thyroid function–associated atherosclerotic cardiovascular disease.