Published in

Karger Publishers, American Journal of Nephrology, p. 1-9, 2023

DOI: 10.1159/000534514

Links

Tools

Export citation

Search in Google Scholar

Urinary Fetuin-A Fragments Predict Progressive Estimated Glomerular Filtration Rate Decline in Two Independent Type 2 Diabetes Cohorts of Different Ethnicities

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

<b><i>Introduction:</i></b> There is a great clinical need for novel markers to predict kidney function decline in patients with type 2 diabetes. We explored the potential of posttranslationally modified fetuin-A fragments in urine (uPTM-FetA) as such a marker. <b><i>Methods:</i></b> We included patients with type 2 diabetes from two independent, nonoverlapping prospective cohort studies. A cut-off for uPTM-FetA, measured via ELISA method, was determined using the Youden index in the primary cohort of patients with type 2 diabetes from Taiwan. Kidney endpoint was defined as an estimated glomerular filtration rate (eGFR) decline ≥30% from baseline, reaching of an eGFR &lt;15 mL/min/1.73 m<sup>2</sup>, or a need of renal replacement therapy. Prospective associations were assessed in Cox regression models. All analyses were replicated in a cohort of patients with type 2 diabetes from the Netherlands. <b><i>Results:</i></b> In total, 294 patients with type 2 diabetes (age 61 ± 10 years, 55% male, eGFR 88 ± 16 mL/min/1.73 m<sup>2</sup>) were included in the primary cohort. During a follow-up of median 4.6 years, 42 participants (14%) experienced the kidney endpoint. Using the defined cut-off, a high uPTM-FetA was associated with a higher risk of renal function decline (<i>P</i><sub>log-rank</sub> &lt; 0.0001). This association was similar in subgroups depending on albuminuria. This association remained, independent of age, sex, baseline eGFR, albuminuria, HbA1c, and other potential confounders (HR: 9.94; 95% CI: 2.96–33.40; <i>p</i> &lt; 0.001 in the final model). Analyses in the validation cohort (376 patients with type 2 diabetes, age 64 ± 11 years, 66% male, eGFR 76 ± 24 mL/min/1.73 m<sup>2</sup>) using the same cut-off yielded similar results. <b><i>Conclusion:</i></b> uPTM-FetA was independently associated with kidney function decline in patients with type 2 diabetes validated in a 2-cohort study. The significant additive predictive power of this biomarker from conventional risk factors suggests its clinical use for renal function progression in patients with type 2 diabetes.