Published in

MDPI, Energies, 24(14), p. 8265, 2021

DOI: 10.3390/en14248265

Links

Tools

Export citation

Search in Google Scholar

Recent Progress and Approaches on Transition Metal Chalcogenides for Hydrogen Production

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Development of efficient and affordable photocatalysts is of great significance for energy production and environmental sustainability. Transition metal chalcogenides (TMCs) with particle sizes in the 1–100 nm have been used for various applications such as photocatalysis, photovoltaic, and energy storage due to their quantum confinement effect, optoelectronic behavior, and their stability. In particular, TMCs and their heterostructures have great potential as an emerging inexpensive and sustainable alternative to metal-based catalysts for hydrogen evolution. Herein, the methods used for the fabrication of TMCs, characterization techniques employed, and the different methods of solar hydrogen production by using different TMCs as photocatalyst are reviewed. This review provides a summary of TMC photocatalysts for hydrogen production.