Published in

Wiley, Plant, Cell and Environment, 4(45), p. 1187-1203, 2022

DOI: 10.1111/pce.14254

Links

Tools

Export citation

Search in Google Scholar

Testing the limits of plant drought stress and subsequent recovery in four provenances of a widely distributed subtropical tree species

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractDrought‐induced tree mortality may increase with ongoing climate change. Unraveling the links between stem hydraulics and mortality thresholds, and the effects of intraspecific variation, remain important unresolved issues. We conducted a water manipulation experiment in a rain‐out shelter, using four provenances of Schima superba originating from a gradient of annual precipitation (1124–1796 mm) and temperature (16.4–22.4°C). Seedlings were droughted to three levels of percentage loss of hydraulic conductivity (i.e., P50, P88 and P99) and subsequently rewatered to field capacity for 30 days; traits related to water and carbon relations were measured. The lethal water potential associated with incipient mortality was between P50 and P88. Seedlings exhibited similar drought responses in xylem water potential, hydraulic conductivity and gas exchange. Upon rehydration, patterns of gas exchange differed among provenances but were not related to the climate at the origin. The four provenances exhibited a similar degree of stem hydraulic recovery, which was correlated with the magnitude of antecedent drought and stem soluble sugar at the end of the drought. Results suggest that there were intraspecific differences in the capacity of S. superba seedlings for carbon assimilation during recovery, indicating a decoupling between gas exchange recovery and stem hydraulics across provenances.