Dissemin is shutting down on January 1st, 2025

Published in

Wiley, New Phytologist, 4(230), p. 1354-1365, 2021

DOI: 10.1111/nph.17298

Links

Tools

Export citation

Search in Google Scholar

Hydraulic failure and tree size linked with canopy die‐back in eucalypt forest during extreme drought

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Summary Eastern Australia was subject to its hottest and driest year on record in 2019. This extreme drought resulted in massive canopy die‐back in eucalypt forests. The role of hydraulic failure and tree size on canopy die‐back in three eucalypt tree species during this drought was examined. We measured pre‐dawn and midday leaf water potential (Ψleaf), per cent loss of stem hydraulic conductivity and quantified hydraulic vulnerability to drought‐induced xylem embolism. Tree size and tree health was also surveyed. Trees with most, or all, of their foliage dead exhibited high rates of native embolism (78–100%). This is in contrast to trees with partial canopy die‐back (30–70% canopy die‐back: 72–78% native embolism), or relatively healthy trees (little evidence of canopy die‐back: 25–31% native embolism). Midday Ψleaf was significantly more negative in trees exhibiting partial canopy die‐back (−2.7 to −6.3 MPa), compared with relatively healthy trees (−2.1 to −4.5 MPa). In two of the species the majority of individuals showing complete canopy die‐back were in the small size classes. Our results indicate that hydraulic failure is strongly associated with canopy die‐back during drought in eucalypt forests. Our study provides valuable field data to help constrain models predicting mortality risk.