Published in

The Electrochemical Society, Journal of The Electrochemical Society, 9(170), p. 090538, 2023

DOI: 10.1149/1945-7111/acf88b

Links

Tools

Export citation

Search in Google Scholar

Exploring the Storage Mechanism of Alkali Ions in Non-Graphitic Hard Carbon Anodes

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

This study aims to develop high-capacity hard carbon anode materials for alkali-ion batteries by controlling the microstructures of non-graphitic hard carbon through an annealing protocol and investigating the effects on the alkali-ion storage mechanisms using physical, chemical, and electrochemical analytical techniques. The hard carbon materials were synthesized at temperatures ranging from 900 °C to 1600 °C. Those synthesized at 1100 °C with high surface area and abundant defects exhibited the highest reversible capacity in Li- and K-ion systems, with the storage dominated by surface-adsorption mechanisms. In contrast, the hard carbon compounds prepared at 1400 °C with numerous curve-featured pores delivered the highest reversible capacity in the Na-ion system, indicating that these pores are the preferred Na-ion storage sites, particularly in low-voltage plateau regions. This study provides a comprehensive understanding of the relationship between microstructures and alkali-ion storage mechanisms in non-graphitic hard carbon and highlights the importance of tailoring the microstructures of hard carbon to achieve high specific capacity for the desired alkali-ion species.