Published in

American Association of Immunologists, The Journal of Immunology, 12(210), p. 1889-1898, 2023

DOI: 10.4049/jimmunol.2200659

Links

Tools

Export citation

Search in Google Scholar

The Tox Gene Encodes Two Proteins with Distinct and Shared Roles in Gene Regulation

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Here we report that the murine Tox gene encodes two proteins from a single mRNA, and we investigate the mechanism of production and function of these proteoforms. The annotated thymocyte selection–associated HMG-box protein (TOX) coding sequence is predicted to produce a 526-aa protein (TOXFL). However, Western blots reveal two bands. We found that the lower band consists of an N-terminally truncated variant of TOX (TOXΔN), whereas the slower-migrating band is TOXFL. The TOXΔN proteoform is alternatively translated via leaky ribosomal scanning from an evolutionarily conserved translation initiation site downstream of the annotated translation initiation site. When expressed exogenously from a cDNA in murine CD8 T cells or HEK cells, or endogenously from the murine Tox locus, both forms are translated, although the ratio of TOXFL/TOXΔN significantly varies with cellular context. This includes regulation of proteoform production during development of murine CD4 T cells in the thymus, where the positive selection of CD4+CD8+ cells and subsequent differentiation to CD4+CD8lo transitional and CD4SP cell subsets is associated with both an increase in total TOX protein and increased TOXΔN production relative to TOXFL. Finally, we found that sole expression of TOXFL had a greater effect on gene regulation during chronic stimulation of murine CD8 T cells in culture mimicking exhaustion than did TOXΔN, including uniquely regulated cell cycle and other genes.