Published in

Wiley, Oikos, 10(2023), 2023

DOI: 10.1111/oik.09803

Links

Tools

Export citation

Search in Google Scholar

Synergistic effects between global warming and water quality change on modelled macrophyte species richness

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Submerged freshwater macrophytes are crucial for the functioning of lakes. Their growth and survival follow environmental conditions like light, temperature, and nutrient availability. Hence, the impending increase in water temperature as well as changes of nutrients and turbidity will lead to changes in macrophyte geographic and depth distribution: Herein, we assess these potential changes. We apply an eco‐physiological macrophyte growth model to simulate biomass growth and survival of virtual species defined by random trait combinations within expert‐derived trait ranges for oligotraphentic, mesotraphentic, and eutraphentic species groups in deep lakes in Bavaria, Germany, which cover clear, moderate, and turbid lake conditions. The emergent potential species richness is compared with empirically observed species richness to evaluate general predictions for current conditions. Thereafter, we apply the model to scenarios of temperature increase and of turbidity and nutrient change to assess potential changes in species richness and the influence of species' traits on being an environmental change ‘winner' or ‘loser'. We find a cross‐lake, hump‐shaped pattern of potential species richness along depth. This largely reflects observed patterns, although mismatches were also detected and might be explained by missing processes and environmental heterogeneity within the lake. Rising temperature leads to increased richness of potential species in all lake types, species groups, and depths. Turbidity and nutrient change effects depend on depth and lake type. ‘Loser species' under increased turbidity and nutrient level are light consumptive and sensible to disturbances, while ‘winner species' have a high biomass production. These findings show that the hump‐shaped depth distributions of submerged macrophyte diversity can emerge solely considering eco‐physiology. The differential responses to environmental changes imply that management measures must account for lake type because those responses can have opposite trends depending on lake depth and type.