Published in

Wiley, Advanced Functional Materials, 2023

DOI: 10.1002/adfm.202308545

Links

Tools

Export citation

Search in Google Scholar

Carrier Trapping Deactivation by Halide Alloying in Formamidinium‐Based Lead Iodide Perovskites

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractFormamidinium lead iodide (FAPbI3) is the benchmark material for the most efficient near‐infrared perovskite light‐emitting diodes (LEDs) and a promising gain medium for perovskite‐based coherent light sources. Thus, it is crucial to understand and control its defect chemistry to harness the full potential of its exceptional radiative recombination properties. Here, this topic is addressed by tailoring the I to Br ratio in the perovskite composition. It is found that introducing small Br quantities improves the yield of radiative recombination with a beneficial impact on both spontaneous and amplified spontaneous emission (ASE) and improves the semiconductor photostability leading to reduced luminescence efficiency roll‐off and enhanced radiance in LEDs. By employing photoemission electron microscopy (PEEM), this improvement in optoelectronic performance can be directly correlated to a reduced hole‐trapping activity achieved by replacing iodide with bromide, thus, providing a convenient yet powerful synthetic approach to control the defect chemistry of the material and fostering its implementation in advanced photonic platforms.