Published in

Bentham Science Publishers, Letters in Drug Design & Discovery, 9(18), p. 872-883, 2021

DOI: 10.2174/1570180818666210528153844

Links

Tools

Export citation

Search in Google Scholar

Virtual Screening Attributes Male Biased COVID-19 Mortality to Predicted Antiviral Activity of Female Sex Hormones

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Background: Coronavirus disease-19 (COVID-19) is a newly emerged pandemic leading to a state of international alert and leaving millions of infections and thousands of deaths all over the world. Analysis of statistics and epidemiological data for the pandemic outcome pinpointed a puzzling influence of human sex on the heterogeneous outcome of COVID-19, where hospital admissions and mortality were higher among males than females. Two theories explained the observed male-biased COVID-19 mortality based on either dosage of immunoregulatory genes coded in X- chromosomes, or on the abundance of the angiotensin-converting enzyme two (ACE2) receptors in males than females. Objective: In our study, we propose a third scenario through virtual screening of direct antiviral effects of sex hormones. Materials and Methods: Updated screening statistics from 47 countries displaying sex-disaggregated data on COVID-19 were employed and visualized in the form of heatmaps depicting sex difference effects on statistics of cases and deaths. Molecular docking and binding simulations of investigated sex steroids against COVID-19 specific proteins were investigated. Results: Analysis of COVID-19 sex-disaggregated data confirmed that male-biased mortality and computer-aided docking found unexpected female sex hormones biased binding against key targets implicated in the life cycle of COVID-19 compared to the male sex hormone testosterone. Other investigated steroids showed promising docking scores, while the male sex hormone exhibited the lowest affinity. Conclusion: Female sex hormones virtually exhibit direct anti-COVID-19 effect, the proposed antiviral effect of sex hormones should be considered to explain the outcomes of mortality. Moreover, the fluctuation of sex hormones influences sex and personal derived-differential response to COVID-19 infection.