Published in

Wiley, ChemMedChem, 12(17), 2022

DOI: 10.1002/cmdc.202200091

Links

Tools

Export citation

Search in Google Scholar

Evaluation of a Radiolabeled Macrocyclic Peptide as Potential PET Imaging Probe for PD−L1

Journal article published in 2022 by Nedra Jouini, Jens Cardinale, Thomas L. Mindt ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractThe interaction between the immune checkpoint PD‐1 and PD−L1 promotes T‐cell deactivation and cancer proliferation. Therefore, immune checkpoint inhibition therapy, which relies on prior assessment of the target, has been widely used for many cancers. As a non‐invasive molecular imaging tool, radiotracers bring novel information on the in vivo expression of biomarkers (e. g., PD−L1), enabling a personalized treatment of patients. Our work aimed at the development of a PD−L1‐specific, peptide‐based PET radiotracer. We synthesized and evaluated a radiolabeled macrocyclic peptide adapted from a patent by Bristol Myers Squibb. Synthesis of [68Ga]Ga‐NJMP1 yielded a product with a radiochemical purity>95 % that was evaluated in vitro. However, experiments on CHO−K1 hPD−L1 cells showed very low cell binding and internalization rates of [68Ga]Ga‐NJMP1 in comparison to a control radiopeptide (WL12). Non‐radioactive cellular assays using time‐resolved fluorescence energy transfer confirmed the low affinity of the reported parent peptide and the DOTA‐derivatives towards PD−L1. The results of our studies indicate that the macrocyclic peptide scaffold reported in the patent literature is not suitable for radiotracer development due to insufficient affinity towards PD−L1 and that C‐terminal modifications of the macrocyclic peptide interfere with important ligand/receptor interactions.