Dissemin is shutting down on January 1st, 2025

Published in

American Association of Immunologists, The Journal of Immunology, 1(208), p. 121-132, 2022

DOI: 10.4049/jimmunol.2100231

Links

Tools

Export citation

Search in Google Scholar

Serglycin Is Involved in Adipose Tissue Inflammation in Obesity

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Chronic local inflammation of adipose tissue is an important feature of obesity. Serglycin is a proteoglycan highly expressed by various immune cell types known to infiltrate adipose tissue under obese conditions. To investigate if serglycin expression has an impact on diet-induced adipose tissue inflammation, we subjected Srgn+/+ and Srgn−/− mice (C57BL/6J genetic background) to an 8-wk high-fat and high-sucrose diet. The total body weight was the same in Srgn+/+ and Srgn−/− mice after diet treatment. Expression of white adipose tissue genes linked to inflammatory pathways were lower in Srgn−/− mice. We also noted reduced total macrophage abundance, a reduced proportion of proinflammatory M1 macrophages, and reduced formation of crown-like structures in adipose tissue of Srgn−/− compared with Srgn+/+ mice. Further, Srgn−/− mice had more medium-sized adipocytes and fewer large adipocytes. Differentiation of preadipocytes into adipocytes (3T3-L1) was accompanied by reduced Srgn mRNA expression. In line with this, analysis of single-cell RNA sequencing data from mouse and human adipose tissue supports that Srgn mRNA is predominantly expressed by various immune cells, with low expression in adipocytes. Srgn mRNA expression was higher in obese compared with lean humans and mice, accompanied by an increased expression of immune cell gene markers. SRGN and inflammatory marker mRNA expression was reduced upon substantial weight loss in patients after bariatric surgery. Taken together, this study introduces a role for serglycin in the regulation of obesity-induced adipose inflammation.