Published in

MDPI, Catalysts, 5(11), p. 526, 2021

DOI: 10.3390/catal11050526

Links

Tools

Export citation

Search in Google Scholar

Mechanochemical Synthesis of Nickel-Modified Metal–Organic Frameworks for Reduction Reactions

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

In this work, we report the incorporation of nickel oxide nanoparticles into a metal–organic framework (MOF) structure by a solvent-free mechanochemical strategy. In particular, the zirconium-based MOF UiO-66 was modified with different Ni loadings and characterized using complementary techniques including X-ray diffraction (XRD), N2 porosimetry and X-ray photoelectron spectroscopy (XPS). The catalytic potential of the as-prepared Ni/UiO-66 materials in the hydrogenation reaction of methyl levulinate using 2-propanol as hydrogen donor solvent has been investigated under flow conditions. Under optimized conditions, the 5%Ni/UiO-66 led to the best catalytic performance (70% yield, 100% selectivity to gamma-valerolactone), which could be attributed to the higher content of the Ni species within the MOF structure. The obtained results are promising and contribute to highlighting the great potential of MOFs in biomass upgrading processes, opening the path to the sustainable development of the chemical industry.