Published in

Wiley, Angewandte Chemie International Edition, 43(61), 2022

DOI: 10.1002/anie.202211365

Wiley, Angewandte Chemie, 43(134), 2022

DOI: 10.1002/ange.202211365

Links

Tools

Export citation

Search in Google Scholar

Supramolecular Assembly of Edge Functionalized Top‐Down Chiral Graphene Quantum Dots

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractThe construction of supramolecular assemblies of heterogeneous materials at the nanoscale is an open challenge in science. Herein, new chiral graphene quantum dots (GQDs) prepared by amidation reaction introducing chiral amide groups and pyrene moieties into the periphery of GQDs are described. The analytical and spectroscopic data show an efficient chemical functionalization and the morphological study of the supramolecular ensembles using SEM and AFM microscopies reveals the presence of highly ordered fibers of several micrometers length. Fluorescence studies, using emission spectroscopy and confocal microscopy, reveal that the fibers stem from the π‐π stacking of both pyrenes and GQDs, together with the hydrogen bonding interactions of the amide groups. Circular dichroism analysis supports the chiral nature of the supramolecular aggregates.