Published in

Wiley, Angewandte Chemie International Edition, 14(62), 2023

DOI: 10.1002/anie.202218094

Wiley, Angewandte Chemie, 14(135), 2023

DOI: 10.1002/ange.202218094

Links

Tools

Export citation

Search in Google Scholar

Fabrication of Super‐Sized Metal Inorganic‐Organic Hybrid Glass with Supramolecular Network via Crystallization‐Suppressing Approach

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractMetal coordination compound (MCC) glasses [e.g., metal‐organic framework (MOF) glass, coordination polymer glass, and metal inorganic‐organic complex (MIOC) glass] are emerging members of the hybrid glass family. So far, a limited number of crystalline MCCs can be converted into glasses by melt‐quenching. Here, we report a universal wet‐chemistry method, by which the super‐sized supramolecular MIOC glasses can be synthesized from non‐meltable MOFs. Alcohol and acid were used as agents to inhibit crystallization. The MIOC glasses demonstrate unique features including high transparency, shaping capability, and anisotropic network. Directional photoluminescence with a large polarization ratio (≈47 %) was observed from samples doped with organic dyes. This crystallization‐suppressing approach enables fabrication of super‐sized MCC glasses, which cannot be achieved by conventional vitrification methods, and thus allows for exploring new MCC glasses possessing photonic functionalities.