Published in

MDPI, Polymers, 20(13), p. 3483, 2021

DOI: 10.3390/polym13203483

Links

Tools

Export citation

Search in Google Scholar

The Effects of Iron Rust on the Ageing of Woods and Their Derived Pulp Paper

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The accelerated ageing of wood in terms of heating or iron rusting has a potential effect on the physio-mechanical, chemical and biological properties of wood. The effects of accelerated ageing on the mechanical, physical and fungal activity properties of some wood materials (Schinus terebinthifolius, Erythrina humeana, Tectona grandis, Pinus rigida and Juglans nigra) were studied after several cycles of heating and iron rusting. The fungal activity was assayed against the growth of Aspergillus terreus, Aspergillus niger, Fusarium culmorum and Stemphylium solani. In addition, the mechanical and optical properties of paper sheets produced from those wood pulps by means of Kraft cooking were evaluated. The mechanical and chemical properties of the studied wood species were affected significantly (p < 0.05) by the accelerated ageing, compared to control woods. With Fourier transform infrared (FTIR) spectroscopy, we detected an increase in the intensity of the spectra of the functional groups of cellulose in the heated samples, which indicates an increase in cellulose content and decrease in lignin content, compared to other chemical compounds. For pulp properties, woods treated by heating showed a decrease in the pulp yield. The highest significant values of tensile strength were observed in pulp paper produced from untreated, heated and iron-rusted P. rigida wood and they were 69.66, 65.66 and 68.33 N·m/g, respectively; we calculated the tear resistance from pulp paper of untreated P. rigida (8.68 mN·m2/g) and T. grandis (7.83 mN·m2/g) and rusted P. rigida (7.56 mN·m2/g) wood; we obtained the values of the burst strength of the pulp paper of untreated woods of P. rigida (8.19 kPa·m2/g) and T. grandis (7.49 kPa·m2/g), as well as the fold number of the pulp paper of untreated, heated and rusted woods from P. rigida, with values of 195.66, 186.33 and 185.66, respectively. After 14 days from the incubation, no fungal inhibition zones were observed. Accelerated ageing (heated or iron-rusted) produced significant effects on the mechanical and chemical properties of the studied wood species and affected the properties of the produced pulp paper.