Dissemin is shutting down on January 1st, 2025

Published in

National Academy of Sciences, Proceedings of the National Academy of Sciences, 46(120), 2023

DOI: 10.1073/pnas.2302468120

Links

Tools

Export citation

Search in Google Scholar

Probing the self-ionization of liquid water with ab initio deep potential molecular dynamics

Journal article published in 2023 by Marcos Calegari Andrade ORCID, Roberto Car ORCID, Annabella Selloni ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The chemical equilibrium between self-ionized and molecular water dictates the acid–base chemistry in aqueous solutions, yet understanding the microscopic mechanisms of water self-ionization remains experimentally and computationally challenging. Herein, Density Functional Theory (DFT)–based deep neural network (DNN) potentials are combined with enhanced sampling techniques and a global acid–base collective variable to perform extensive atomistic simulations of water self-ionization for model systems of increasing size. The explicit inclusion of long-range electrostatic interactions in the DNN potential is found to be crucial to accurately reproduce the DFT free energy profile of solvated water ion pairs in small (64 and 128 H 2 O) cells. The reversible work to separate the hydroxide and hydronium to a distance S is found to converge for simulation cells containing more than 500 H 2 O, and a distance of ∼ 8 Å is the threshold beyond which the work to further separate the two ions becomes approximately zero. The slow convergence of the potential of mean force with system size is related to a restructuring of water and an increase of the local order around the water ions. Calculation of the dissociation equilibrium constant illustrates the key role of long-range electrostatics and entropic effects in the water autoionization process.