Full text: Download
Purpose: Many semi-automated and fully-automated approaches have been proposed in literature to improve the objectivity of the estimation of conjunctival hyperemia, based on image processing analysis of eyes’ photographs. The purpose is to improve its evaluation using faster fully-automated systems and independent by the human subjectivity. Methods: In this work, we introduce a fully-automated analysis of the redness grading scales able to completely automatize the clinical procedure, starting from the acquired image to the redness estimation. In particular, we introduce a neural network model for the conjunctival segmentation followed by an image processing pipeline for the vessels network segmentation. From these steps, we extract some features already known in literature and whose correlation with the conjunctival redness has already been proved. Lastly, we implemented a predictive model for the conjunctival hyperemia using these features. Results: In this work, we used a dataset of images acquired during clinical practice.We trained a neural network model for the conjunctival segmentation, obtaining an average accuracy of 0.94 and a corresponding IoU score of 0.88 on a test set of images. The set of features extracted on these ROIs is able to correctly predict the Efron scale values with a Spearman’s correlation coefficient of 0.701 on a set of not previously used samples. Conclusions: The robustness of our pipeline confirms its possible usage in a clinical practice as a viable decision support system for the ophthalmologists.