Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Applied Sciences, 7(11), p. 2978, 2021

DOI: 10.3390/app11072978

Links

Tools

Export citation

Search in Google Scholar

A Fully Automated Pipeline for a Robust Conjunctival Hyperemia Estimation

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Purpose: Many semi-automated and fully-automated approaches have been proposed in literature to improve the objectivity of the estimation of conjunctival hyperemia, based on image processing analysis of eyes’ photographs. The purpose is to improve its evaluation using faster fully-automated systems and independent by the human subjectivity. Methods: In this work, we introduce a fully-automated analysis of the redness grading scales able to completely automatize the clinical procedure, starting from the acquired image to the redness estimation. In particular, we introduce a neural network model for the conjunctival segmentation followed by an image processing pipeline for the vessels network segmentation. From these steps, we extract some features already known in literature and whose correlation with the conjunctival redness has already been proved. Lastly, we implemented a predictive model for the conjunctival hyperemia using these features. Results: In this work, we used a dataset of images acquired during clinical practice.We trained a neural network model for the conjunctival segmentation, obtaining an average accuracy of 0.94 and a corresponding IoU score of 0.88 on a test set of images. The set of features extracted on these ROIs is able to correctly predict the Efron scale values with a Spearman’s correlation coefficient of 0.701 on a set of not previously used samples. Conclusions: The robustness of our pipeline confirms its possible usage in a clinical practice as a viable decision support system for the ophthalmologists.