Published in

Wiley, Advanced Energy Materials, 32(13), 2023

DOI: 10.1002/aenm.202301026

Links

Tools

Export citation

Search in Google Scholar

Correlating the Hybridization of Local‐Exciton and Charge‐Transfer States with Charge Generation in Organic Solar Cells

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractIn organic solar cells with very small energetic‐offset (ΔELE − CT), the charge‐transfer (CT) and local‐exciton (LE) states strongly interact via electronic hybridization and thermal population effects, suppressing the non‐radiative recombination. Here, we investigated the impact of these effects on charge generation and recombination. In the blends of PTO2:C8IC and PTO2:Y6 with very small, ultra‐fast CT state formation was observed, and assigned to direct photoexcitation resulting from strong hybridization of the LE and CT states (i.e., LE‐CT intermixed states). These states in turn accelerate the recombination of both CT and charge separated (CS) states. Moreover, they can be significantly weakened by an external‐electric field, which enhanced the yield of CT and CS states but attenuated the emission of the device. This study highlights that excessive LE‐CT hybridization due to very low , whilst enabling direct and ultrafast charge transfer and increasing the proportion of radiative versus non‐radiative recombination rates, comes at the expense of accelerating recombination losses competing with exciton‐to‐charge conversion process, resulting in a loss of photocurrent generation.