Published in

Cambridge University Press, Canadian Entomologist, 4(153), p. 482-496, 2021

DOI: 10.4039/tce.2021.14

Links

Tools

Export citation

Search in Google Scholar

Parasitoid community responds indiscriminately to fluctuating spruce budworm (Lepidoptera: Tortricidae) and other caterpillars on balsam fir (Pinaceae)

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractThe world is astoundingly variable, and organisms – from individuals to whole communities – must respond to variability to survive. One example of nature’s variability is the fluctuations in populations of spruce budworm, Choristoneura fumiferana Clemens (Lepidoptera: Tortricidae), which cycle every 35 years. In this study, we examined how a parasitoid community altered its parasitism of budworm and other caterpillar species in response to these fluctuations. Budworm and other caterpillar species were sampled from balsam fir (Pinaceae) in three plots for 14 years in Atlantic Canada, then were reared to identify any emerging parasitoids. We found that the parasitoid community generally showed an indiscriminate response (i.e., no preference, where frequencies dictated parasitism rates) to changes in budworm frequencies relative to other caterpillar species on balsam fir. We also observed changes in topology and distributions of interaction strengths between the parasitoids, budworm, and other caterpillar species as budworm frequencies fluctuated. Our study contributes to the hypothesis that hardwood trees are a critical part of the budworm–parasitoid food web, where parasitoids attack other caterpillar species on hardwood trees when budworm populations are low. Taken together, our results show that a parasitoid community collectively alters species interactions in response to variable budworm frequencies, thereby fundamentally shifting food-web pathways.