Published in

Wiley, Journal of Neurochemistry, 2(163), p. 113-132, 2022

DOI: 10.1111/jnc.15679

Links

Tools

Export citation

Search in Google Scholar

SARS‐CoV‐2 infection impacts carbon metabolism and depends on glutamine for replication in Syrian hamster astrocytes

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractCOVID‐19 causes more than million deaths worldwide. Although much is understood about the immunopathogenesis of the lung disease, a lot remains to be known on the neurological impact of COVID‐19. Here, we evaluated immunometabolic changes using astrocytes in vitro and dissected brain areas of SARS‐CoV‐2 infected Syrian hamsters. We show that SARS‐CoV‐2 alters proteins of carbon metabolism, glycolysis, and synaptic transmission, many of which are altered in neurological diseases. Real‐time respirometry evidenced hyperactivation of glycolysis, further confirmed by metabolomics, with intense consumption of glucose, pyruvate, glutamine, and alpha ketoglutarate. Consistent with glutamine reduction, the blockade of glutaminolysis impaired viral replication and inflammatory response in vitro. SARS‐CoV‐2 was detected in vivo in hippocampus, cortex, and olfactory bulb of intranasally infected animals. Our data evidence an imbalance in important metabolic molecules and neurotransmitters in infected astrocytes. We suggest this may correlate with the neurological impairment observed during COVID‐19, as memory loss, confusion, and cognitive impairment.image