Published in

Wiley, Angewandte Chemie International Edition, 28(61), 2022

DOI: 10.1002/anie.202205403

Wiley, Angewandte Chemie, 28(134), 2022

DOI: 10.1002/ange.202205403

Links

Tools

Export citation

Search in Google Scholar

A Fluorescent Cage for Supramolecular Sensing of 3‐Nitrotyrosine in Human Blood Serum

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract3‐Nitrotyrosine (NT) is generated by the action of peroxynitrite and other reactive nitrogen species (RNS), and as a consequence it is accumulated in inflammation‐associated conditions. This is particularly relevant in kidney disease, where NT concentration in blood is considerably high. Therefore, NT is a crucial biomarker of renal damage, although it has been underestimated in clinical diagnosis due to the lack of an appropriate sensing method. Herein we report the first fluorescent supramolecular sensor for such a relevant compound: Fluorescence by rotational restriction of tetraphenylethenes (TPE) in a covalent cage is selectively quenched in human blood serum by 3‐nitrotyrosine (NT) that binds to the cage with high affinity, allowing a limit of detection within the reported physiological concentrations of NT in chronic kidney disease.