Published in

American Institute of Physics, Applied Physics Letters, 6(122), 2023

DOI: 10.1063/5.0131898

Links

Tools

Export citation

Search in Google Scholar

Phenomenon of photo-regulation on gold/diamond Schottky barriers and its detector applications

Journal article published in 2023 by Xiaohui Zhang ORCID, Kang Liu ORCID, Benjian Liu ORCID, Bing Dai ORCID, Yumin Zhang ORCID, Jiaqi Zhu ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

A thickness asymmetric electrode structure on an oxygen-terminated type IIa diamond was designed and prepared (one electrode was semitransparent to ultraviolet light and the other blocked the transmission of ultraviolet light). This structure exhibited an apparent photo-induced rectification property under irradiation by a deuterium lamp. This is attributed to the mechanism by which the light penetrating the electrode reduces the metal–diamond contact barrier. Furthermore, we developed a light-modulated Schottky barrier diamond photodetector based on this mechanism. Solar-blind light can lower the Schottky barrier height in situ in the presence of light, which significantly enhances the photocurrent. However, the Schottky barrier is not reduced by light regulation when there is no light; therefore, the low dark current of the detector is still guaranteed. Compared with the non-photo-regulated Schottky barrier detector, the photo-regulated Schottky barrier detector exhibits a 128% increase in responsivity at 220 nm under a 1.6 V/μm bias. For such an obvious difference in detection performance, this mechanism has rarely been a focus of studies on diamond detectors. In addition to diamond detectors, light-modulated barrier technology can also be applied to other fields related to the diamond surface potential, such as color center control and Schottky diodes; it can also be used to control or evaluate device performance.