Dissemin is shutting down on January 1st, 2025

Published in

Wiley, Chemistry - A European Journal, 64(27), p. 16049-16055, 2021

DOI: 10.1002/chem.202103079

Links

Tools

Export citation

Search in Google Scholar

Expanding the Chemical Space of Tetracyanobuta‐1,3‐diene (TCBD) through a Cyano‐Diels‐Alder Reaction: Synthesis, Structure, and Physicochemical Properties of an Anthryl‐fused‐TCBD Derivative

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractTetracyanobuta‐1,3‐diene (TCBD) is a powerful and versatile electron‐acceptor moiety widely used for the preparation of electroactive conjugates. While many reports addressing its electron‐accepting capability have appeared in the literature, significantly scarcer are those dealing with its chemical modification, a relevant topic which allows to broaden the chemical space of this interesting functional unit. Here, we report on the first example of a high‐yielding cyano‐Diels‐Alder (CDA) reaction between TCBD, that is, where a nitrile group acts as a dienophile, and an anthryl moiety, that is, acting as a diene. The resulting anthryl‐fused‐TCBD derivative, which structure was unambiguously identified by X‐ray diffraction, shows high thermal stability, remarkable electron‐accepting capability, and interesting electronic ground‐ and excited‐state features, as characterized by a thorough theoretical, electrochemical, and photophysical investigation. Moreover, a detailed kinetic analysis of the intramolecular CDA reaction transforming the anthryl‐TCBD‐based reactant into the anthryl‐fused‐TCBD product was carried out at different temperatures.