Published in

The Electrochemical Society, Journal of The Electrochemical Society, 9(169), p. 090501, 2022

DOI: 10.1149/1945-7111/ac8a1e

Links

Tools

Export citation

Search in Google Scholar

Progress Towards Extended Cycle Life Si-based Anodes: Investigation of Fluorinated Local High Concentration Electrolytes

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Silicon (Si) anodes are promising candidates for Li-ion batteries due to their high specific capacity and low operating potential. Implementation has been challenged by the significant Si volume changes during (de)lithiation and associated growth/regrowth of the solid electrolyte interphase (SEI). In this report, fluorinated local high concentration electrolytes (FLHCEs) were designed such that each component of the electrolyte (solvent, salt, diluent) is fluorinated to modify the chemistry and stabilize the SEI of high (30%) silicon content anodes. FLHCEs were formulated to probe the electrolyte salt concentration and ratio of the fluorinated carbonate solvents to a hydrofluoroether diluent. Higher salt concentrations led to higher viscosities, conductivities, and contact angles on polyethylene separators. Electrochemical cycling of Si-graphite/NMC622 pouch cells using the FLHCEs delivered up to 67% capacity retention after 100 cycles at a C/3 rate. Post-cycling X-ray photoelectron spectroscopy (XPS) analyses of the Si-graphite anodes indicated the FLHCEs formed a LiF rich solid electrolyte interphase (SEI). The findings show that the fluorinated local high concentration electrolytes contribute to stabilizing the Si-graphite electrode over extended cycling.